Big Data // Big Data Analytics
News
4/18/2013
01:27 PM
Doug Henschen
Doug Henschen
Slideshows
Connect Directly
Google+
LinkedIn
Twitter
RSS
E-Mail
50%
50%

5 Big Wishes For Big Data Deployments

Big data project leaders still hunger for some key technology ingredients. Starting with SQL analysis, we examine the top five wants and the people working to solve those problems.
Previous
2 of 6
Next


Wish 1: SQL Analysis At Big-Data Scale
You could compile a massive data set just by gathering all the stories and reports that have been written about the shortage of big-data talent. The most acute need is for data scientist types who know data and who also know how to write custom code, MapReduce jobs, and algorithms to gain insights from big data. But what if SQL-savvy professionals schooled in relational databases and business intelligence (BI) and analytics tools could do more of the heavy lifting? There are many more SQL professionals out there than there are data scientists, and most SQL pros would be eager to expand their career potential.

There's a big push to deliver SQL-analysis capabilities on top of Hadoop, and the talent shortage is just one reason. The second reason for the trend is that Apache Hive, Hadoop's incumbent data warehousing infrastructure, offers a limited subset of SQL-like query capabilities and suffers from slow performance tied to behind-the-scenes MapReduce processing.

Answering the call for broader, faster SQL querying on Hadoop are projects and initiatives including Cloudera Impala, EMC's HAWQ query feature on the Pivotal HD distribution, Hortonworks Stinger, IBM Big SQL, MapR-supported Apache Drill, and Teradata SQL-H.

Even the NoSQL camp wants better, SQL-like querying. Last year 10Gen added a real-time data aggregation framework to its popular MongoDB NoSQL database. The aggregation framework lets users directly query data within MongoDB without resorting to writing and running complicated, batch-oriented MapReduce jobs. More evidence is Acunu, which has developed a SQL-like AQL language to support querying on top of Cassandra.

The development of SQL querying capabilities is only the beginning. BI and analytics tools and systems native to big-data platforms are emerging. Examples include Datameer, Hadapt, Karmasphere and Platfora, and they're offering distinguishing query, analysis, data-visualization and monitoring capabilities on top of Hadoop.

RECOMMENDED READING:

Oracle Cuts Big Data Appliance Down To Size

Inside IBM's Big Data, Hadoop Moves

MongoDB Upgrade Fills NoSQL Analytics Void

10Gen Enterprise Release Takes MongoDB Uptown

Will Microsoft's Hadoop Bring Big Data To Masses?

6 Big Data Advances: Some Might Be Giants

Hadoop Meets Near Real-Time Data

Big Data Analytics Masters Degrees: 20 Top Programs

Big Data's Surprising Uses: From Lady Gaga To CIA

13 Big Data Vendors To Watch In 2013

Big Data Talent War: 7 Ways To Win

Teradata Joins SQL-On-Hadoop Bandwagon

Previous
2 of 6
Next
Comment  | 
Print  | 
More Insights
6 Tools to Protect Big Data
6 Tools to Protect Big Data
Most IT teams have their conventional databases covered in terms of security and business continuity. But as we enter the era of big data, Hadoop, and NoSQL, protection schemes need to evolve. In fact, big data could drive the next big security strategy shift.
Register for InformationWeek Newsletters
White Papers
Current Issue
InformationWeek Tech Digest - July 22, 2014
Sophisticated attacks demand real-time risk management and continuous monitoring. Here's how federal agencies are meeting that challenge.
Flash Poll
Video
Slideshows
Twitter Feed
InformationWeek Radio
Archived InformationWeek Radio
A UBM Tech Radio episode on the changing economics of Flash storage used in data tiering -- sponsored by Dell.
Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.