Big Data // Big Data Analytics
News
4/18/2013
01:27 PM
Doug Henschen
Doug Henschen
Slideshows
Connect Directly
Google+
LinkedIn
Twitter
RSS
E-Mail
50%
50%
Repost This

5 Big Wishes For Big Data Deployments

Big data project leaders still hunger for some key technology ingredients. Starting with SQL analysis, we examine the top five wants and the people working to solve those problems.
Previous
4 of 6
Next


Wish 3: Easier Paths To Advanced Analytics
Developing algorithms and predictive models is work that has to be carried out by hard-to-find, expensive data scientists. Or is it? Scarcity of talent is one reason big-data, analytics and business intelligence vendors are developing machine-learning approaches. Proven in applications including optical character recognition, spam filtering and computer security threat detection, machine learning uses learning algorithms that are trained by the data itself. If you show the algorithm thousands or tens of thousands of examples of scanned text characters, unsolicited email messages, or virus bots and malware, it can reliably find more examples.

The same approach can be applied to spotting customers who are ready to churn or jet engines that are about to fail. With machine learning, trained models also can continue to learn from new data. Amazon.com and Netflix, for example, use algorithms to spot patterns in customer transactions so they can recommend other books or movies. When a new book or movie comes out, these companies can start recommending it as soon as their algorithms discerns the preference pattern in the data.

Apache Mahout is the leading route to deploying machine-learning-based clustering, classification and collaborative filtering algorithms on Hadoop, but these techniques are also supported by the R statistical programming language. Commercial vendors supporting or embedding machine-learning techniques include Alpine Data Labs, Birst, Causata, Lionsolver, Revolution Analytics and a growing list of others.

RECOMMENDED READING:

Oracle Cuts Big Data Appliance Down To Size

Inside IBM's Big Data, Hadoop Moves

MongoDB Upgrade Fills NoSQL Analytics Void

10Gen Enterprise Release Takes MongoDB Uptown

Will Microsoft's Hadoop Bring Big Data To Masses?

6 Big Data Advances: Some Might Be Giants

Hadoop Meets Near Real-Time Data

Big Data Analytics Masters Degrees: 20 Top Programs

Big Data's Surprising Uses: From Lady Gaga To CIA

13 Big Data Vendors To Watch In 2013

Big Data Talent War: 7 Ways To Win

Teradata Joins SQL-On-Hadoop Bandwagon

Previous
4 of 6
Next
Comment  | 
Print  | 
More Insights
InformationWeek Elite 100
InformationWeek Elite 100
Our data shows these innovators using digital technology in two key areas: providing better products and cutting costs. Almost half of them expect to introduce a new IT-led product this year, and 46% are using technology to make business processes more efficient.
Register for InformationWeek Newsletters
White Papers
Current Issue
Video
Slideshows
Twitter Feed
Audio Interviews
Archived Audio Interviews
GE is a leader in combining connected devices and advanced analytics in pursuit of practical goals like less downtime, lower operating costs, and higher throughput. At GIO Power & Water, CIO Jim Fowler is part of the team exploring how to apply these techniques to some of the world's essential infrastructure, from power plants to water treatment systems. Join us, and bring your questions, as we talk about what's ahead.