Big Data // Big Data Analytics
News
12/10/2012
03:30 PM
Connect Directly
Facebook
Google+
RSS
E-Mail
50%
50%

Future Power Grids Will Need Big Data Analysis

For the world's next-generation electrical networks, analysis and standardization will be just as important as power inverters and switches.

 Big Data Talent War: 7 Ways To Win
Big Data Talent War: 7 Ways To Win
(click image for larger view and for slideshow)
For more than a century, electrical power the world over has relied on the same, tested, hub-and-spoke architecture: A centralized power plant for production, a distribution grid and, finally, passive consumers.

But that architecture is changing.

For one thing, alternative energy solutions such as wind and solar dramatically increase the points of production, sometimes pushing it all the way to the consumer's rooftop. For another, these forms of power generation are variable, making their measurement and management much more complicated.

Meanwhile, the electrical grid is gaining intelligence. So-called smart grid initiatives not only seek to better handle demand spikes and more efficiently use electrical power, they assume a bidirectional world in which electricity can flow back onto the grid, if a local subnetwork generates more power than it consumes.

[ Read Big Data Meets Texas Smart Energy Grid. ]

To make all this work requires modeling, forecasting and simulation software, as well as enterprise systems that can handle large amounts of real-time data.

"IT will become the critical supporting backbone for distributed generation, both in developed and developing countries," Nagendra Cherukupalli, the chief technology officer of global solar energy company SunEdison, told InformationWeek. "To my mind, IT is fundamental and foundational in any kind of distributed [energy] regime."

SunEdison manages 900 solar energy installations around the globe. Its three control centers are based in Chennai, India; Madrid, Spain; and Belmont, Calif. The IP-enabled equipment in the field communicates status and performance, sending this data across the Internet to the centers, which can optimize the gear remotely or send out a technician to fix a problem.

An ongoing problem, said Cherukupalli, is the lack of industry-standard protocols, which requires companies like SunEdison to develop core enterprise systems to translate and normalize the data coming from all the systems, whether these are solar panels, wind farms or batteries.

"There are initiatives going on to standardize these protocols," he said, adding this would free companies like his from low-level work and let them focus on interpreting the data and making it useful to consumers and others. In the U.S., one center for this work is the Department of Energy's Office of Electricity Delivery and Energy Reliability (OE). Among the office's four priorities, listed on its Web page, is the pursuit of smart grid research and development to "adapt and integrate the use of advanced digital technology to modernize the nation's electric delivery network for enhanced operational intelligence and connectivity."

Along with monitoring electrical production and consumption, SunEdison monitors environmental factors such as sun intensity, temperature, cloud cover and wind velocity in order to maximize the output of its systems in the field. Indeed, the volume of data created in distributed energy networks is substantial, leading companies like SunEdison into big data modeling and analytics.

In its white paper "Managing big data for smart grids and smart meters," IBM succinctly outlines the data-volume problem this way: "Going from one meter reading a month to smart meter readings every 15 minutes works out to 96 million reads per day for every million meters. The result is a 3,000-fold increase in data that can be overwhelming if not properly managed."

But IBM goes on to address the potential upside of all this new data, which it says will not only make the electrical grid more efficient but enable new services and products for customers.

Previous
1 of 2
Next
Comment  | 
Print  | 
More Insights
6 Tools to Protect Big Data
6 Tools to Protect Big Data
Most IT teams have their conventional databases covered in terms of security and business continuity. But as we enter the era of big data, Hadoop, and NoSQL, protection schemes need to evolve. In fact, big data could drive the next big security strategy shift.
Register for InformationWeek Newsletters
White Papers
Current Issue
InformationWeek Tech Digest - July 22, 2014
Sophisticated attacks demand real-time risk management and continuous monitoring. Here's how federal agencies are meeting that challenge.
Flash Poll
Video
Slideshows
Twitter Feed
InformationWeek Radio
Archived InformationWeek Radio
A UBM Tech Radio episode on the changing economics of Flash storage used in data tiering -- sponsored by Dell.
Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.