Big Data. Big Decisions
InformationWeek
Special Coverage Series


Big Data Tip: Don't Save Everything

No wonder you're overloaded by ever-growing volumes of data. You're saving too much, advises Digi International exec.

13 Big Data Vendors To Watch In 2013
13 Big Data Vendors To Watch In 2013
(click image for larger view and for slideshow)
Big data is all about gaining insights from very large and diverse volumes of information. But often organizations make the mistake of trying to collect every bit of data that's available to them, no matter how inconsequential.

This record-it-all approach is a waste of resources and money. A smarter solution is to decide beforehand what data is essential to your operation, and then take the necessary steps to collect, process, filter, and analyze it, says Joel Young, senior VP of research and development and CTO of Digi International, a machine-to-machine (M2M) solutions provider.

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

Founded in 1985, Digi International has evolved from a supplier of multi-port serial adapter cards for servers to a cloud platform for connecting devices. The company's cloud-based iDigi product, for instance, allows organizations to connect and manage device networks.

[ Big data has value. Accounting rules should reflect that. Read more at What's Your Big Data Worth? ]

In a phone interview with InformationWeek, Young said that companies are often overwhelmed by big data, particularly if they lack a clear definition of how they want to use it. Machine-to-machine communications, which may involve hundreds, if not thousands, of devices spread across a wide geographic area, can exacerbate this problem. "When you have a device that's sending information every second or minute, and you have a hundred thousand of these, you get a lot of data very quickly," said Young.

Some companies aren't confused by big data because they have a clear idea of what they want to do, and how they want to do it. "Others are lost," Young said.

To avoid the problem of having too much data -- much of which an organization may never analyze -- some big data soul searching is in order. "What problem are you trying to solve? You've got all this data, what do you want to do?" asked Young rhetorically. "A lot of times there's a whole lot of data you may not even need."

Once a company identifies the business problem it wants to solve, it can decide which data it needs, and establish rules for gathering that information. "One of the biggest problems I've found with big data is that people record way, way more than they need to," said Young.

A vending company that Digi International worked with recently had a big data problem with its old coin-operated vending machines. The firm had two major issues with its vending hardware, which totaled about 50,000 machines, many deployed in remote locations.

The first problem was that workers who collected coins from the machines would often keep some of the change for themselves. The second was that when the machines failed -- perhaps due to a tripped circuit breaker or a clogged hose -- the company didn't hear about the problem unless someone called in to report it.

"There are all kinds of data you could collect on these machines," Young said, but the company really needed to know just two things: the number of quarters inserted into the vending devices, and whether or not the machines were running.

Digi International set up a cellular system for the company's machines, which now report back to the cloud-based iDigi platform. Since cellular data can get expensive, particularly when each machine generates only about $12 a day in revenue, the system logs data to iDigi only once a day. "We charge $5 per month per machine, including the cellular service," said Young.

A new study by research firm IDC shows that only 3% of data today is tagged, and a scant 0.5% is analyzed. In addition, the volume of big data will nearly double every two years between today and 2020, reaching 40,000 exabytes, or 40 trillion gigabytes, in just 7 years, IDC predicts.

Predictive analysis is getting faster, more accurate and more accessible. Combined with big data, it's driving a new age of experiments. Also in the new, all-digital Advanced Analytics issue of InformationWeek: Are project management offices a waste of money? (Free registration required.)



Related Reading




Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

BYTE encourages readers to engage in spirited, healthy debate, including taking us to task. However, BYTE moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. BYTE further reserves the right to disable the profile of any commenter participating in said activities.

Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.

Follow InformationWeek

By The Numbers

Pie Chart: Formal Big Data Strategy

Data: InformationWeek 2012 Big Data Survey of 231 business technology professionals, December 2011

What Do You Think?

Which group is the primary user of your organization's data?
Department-level analysts
Senior business management
A wide array of business users
Dedicated business analyst group
Business users dedicated to analysis (not full time)
Others



Related Content

From Our Sponsor

Big Data: Harnessing a Game-Changing Asset

Big Data: Harnessing a Game-Changing Asset

Big data is changing the way companies of all sizes go about their business by unlocking insight. Find out what they are saying about the impact data has had on their organization in the past five years, and the future agenda.

Big Data Meets Big Data Analytics

Big Data Meets Big Data Analytics

The vision of big data is that organizations will harvest every byte of relevant data and make superior decisions. Explore how big data technologies not only support the ability to collect large amounts, but provide the ability to take advantage of its full value.

The Chief Merits of Hadoop

The Chief Merits of Hadoop

Companies founded by Hadoop contributors, provide validated software builds and enterprise support contracts for organizations that aren't comfortable with unsupported open-source software. Find out why many US Fortune 500 companies have either completed or are planning a project involving Hadoop.

High-Performance Analytics Makes the Difference

High-Performance Analytics Makes the Difference

How do you solve your biggest big data problems? If you focus on the analytic rather than a transactional basis, you need high-performance analytics. Explore what you could do differently if you drastically reduce processing times for fraud, risk, marketing and collections.

4 Recommendations to Guide Business Intelligence Purchases

4 Recommendations to Guide Business Intelligence Purchases

Next-generation BI tools blend the capabilities of top-down, metrics-driven reporting with bottom-up, ad hoc analyses seamlessly. Read this white paper to learn about 4 key recommendations that will prepare you for your next BI Purchase.

Informationweek Reports

Research: The Big Data Management Challenge

Research: The Big Data Management Challenge

The challenge of big data is real, but most organizations don't differentiate 'big data' from traditional data, and nearly 90% of respondents to our survey use conventional databases as the primary means of handling data. We'll help you understand what constitutes big data (it's not just size) and the numerous management challenges it poses.