Big Data. Big Decisions
InformationWeek
Special Coverage Series


What's Your Big Data Worth?

Big data experts say accounting rules need to catch up to the fact that information has value that should be reflected on a company's books.

13 Big Data Vendors To Watch In 2013
13 Big Data Vendors To Watch In 2013
(click image for larger view and for slideshow)
Business leaders who want to start valuing their data with the same rigor and discipline they apply to physical assets are being stymied by out-of-date accounting practices, a panel of experts told a meeting of the prestigious Executives' Club of Chicago earlier this week.

Information has a discernible value -- one that should be accounted for on a company's books, according to Doug Laney, VP, analytics & information management at Gartner. Laney is best known for his influential research note in 2001 that framed big data in terms of the three V's: Volume, Velocity and Variety.

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

Unfortunately, Laney declared, accounting practices have not caught up to this need. He noted that after the 9/11 terror attacks, insurance companies denied claims related to data loss because the companies hadn't put these assets on their balance sheets. The current financial accounting standard still "explicitly excludes" data, Laney said.

[ Overwhelmed with information? Here's how to take control: 6 Steps To Manage Big Data. ]

The situation may be somewhat better internationally. Introducing the panel, Bob Kress, Accenture's executive director, global IT audit, observed that "data" was added as an asset class during the World Economic Forum Summit in Dubai in November.

Laney said Gartner clients lately have been asking not only how they can become more information-driven but how they can generate revenues from their own data assets. Some of the "dark data" -- information a company captures but doesn't use -- can be "spun into gold," he said.

Panelist Michael Connor, VP, enterprise data architecture at insurance giant QBE North America, said data was valued, in general. But echoing Laney, he said different types of data and their relative worth were not being captured from an accounting standpoint.

He suggested today's businesses need a more nuanced way to account for the value of different data assets. "The revelation for manufacturing accountants in the late '80's and early '90's centered on properly assigning re-work dollars proportionately to the appropriate line of business," Connor explained in an email. "For the auto industry, as an example, it implies that certain cars (e.g., lines of business) looked profitable because all cars (LOBs) shared in re-work dollars equally. However, the reality was that the certain line of cars deserved 90% of the costs." Whether you want it or not, the amount and variety of data are expanding exponentially, said panelist John Lewis, president & CEO, consumer group, NA, at Nielsen. Lewis urged the audience of about 150 to "embrace that trend" and transition their organizations to "understand information is a competency" that needs the right people, processes and platforms. Later, he said that executives who say the big data phenomenon is being overhyped "are behind and will fall further behind."

Asked where organizations err in their data approach, Lewis said a common mistake was "falling in love with your own data" and failing to incorporate external sources, such as industry or consumer data. "You'd be surprised how common that is," he said.

For Gartner's Laney, it's a mistake to use exclusively data events. Gartner has defined four levels of business intelligence sophistication: descriptive, diagnostic, predictive and prescriptive. In the final, prescriptive stage, Laney said, "[companies can] take insights and predictions to make something happen."

Predictive analysis is getting faster, more accurate and more accessible. Combined with big data, it's driving a new age of experiments. Also in the new, all-digital Advanced Analytics issue of InformationWeek: Are project management offices a waste of money? (Free registration required.)



Related Reading




Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

BYTE encourages readers to engage in spirited, healthy debate, including taking us to task. However, BYTE moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. BYTE further reserves the right to disable the profile of any commenter participating in said activities.

Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.

Follow InformationWeek

By The Numbers

Pie Chart: Formal Big Data Strategy

Data: InformationWeek 2012 Big Data Survey of 231 business technology professionals, December 2011

What Do You Think?

Which group is the primary user of your organization's data?
Department-level analysts
Senior business management
A wide array of business users
Dedicated business analyst group
Business users dedicated to analysis (not full time)
Others



Related Content

From Our Sponsor

Big Data: Harnessing a Game-Changing Asset

Big Data: Harnessing a Game-Changing Asset

Big data is changing the way companies of all sizes go about their business by unlocking insight. Find out what they are saying about the impact data has had on their organization in the past five years, and the future agenda.

Big Data Meets Big Data Analytics

Big Data Meets Big Data Analytics

The vision of big data is that organizations will harvest every byte of relevant data and make superior decisions. Explore how big data technologies not only support the ability to collect large amounts, but provide the ability to take advantage of its full value.

The Chief Merits of Hadoop

The Chief Merits of Hadoop

Companies founded by Hadoop contributors, provide validated software builds and enterprise support contracts for organizations that aren't comfortable with unsupported open-source software. Find out why many US Fortune 500 companies have either completed or are planning a project involving Hadoop.

High-Performance Analytics Makes the Difference

High-Performance Analytics Makes the Difference

How do you solve your biggest big data problems? If you focus on the analytic rather than a transactional basis, you need high-performance analytics. Explore what you could do differently if you drastically reduce processing times for fraud, risk, marketing and collections.

4 Recommendations to Guide Business Intelligence Purchases

4 Recommendations to Guide Business Intelligence Purchases

Next-generation BI tools blend the capabilities of top-down, metrics-driven reporting with bottom-up, ad hoc analyses seamlessly. Read this white paper to learn about 4 key recommendations that will prepare you for your next BI Purchase.

Informationweek Reports

Research: The Big Data Management Challenge

Research: The Big Data Management Challenge

The challenge of big data is real, but most organizations don't differentiate 'big data' from traditional data, and nearly 90% of respondents to our survey use conventional databases as the primary means of handling data. We'll help you understand what constitutes big data (it's not just size) and the numerous management challenges it poses.