HP Reveals Memristor, The Fourth Passive Circuit Element - InformationWeek
IoT
IoT
Infrastructure // PC & Servers
News
4/30/2008
01:47 PM
50%
50%
RELATED EVENTS
Useing Threat Data to Improve Your Cyber Defense
Aug 10, 2017
Attend this webinar to learn how you can determine which threats pose the greatest danger to your ...Read More>>

HP Reveals Memristor, The Fourth Passive Circuit Element

The memristor will enable a new era of nanoscale electronics, scientists say.

PORTLAND, Ore. — The long-sought after memristor -- the "missing link" in electronic circuit theory -- has been invented by Hewlett Packard Senior Fellow R. Stanley Williams at HP Labs in Palo Alto, Calif.

Memristors -- the fourth passive component type after resistors, capacitors and inductors -- were postulated in a seminal 1971 paper in the IEEE Transactions on Circuit Theory by professor Leon Chua at the University of California (Berkeley), but their first realization was just announced today by HP. According to Williams and Chua, now virtually every electronics textbook will have to be revised to include the memristor and the new paradigm it represents for electronic circuit theory.

"My situation was similar to that of the Russian chemist Dmitri Mendeleev who invented the periodic table in 1869," said Chua. "Mendeleev postulated that there were elements missing from the table, and now all those elements have been found. Likewise, Stanley Williams at HP Labs has now found the first example of the missing memristor circuit element."

When Chua wrote his seminal paper, he used mathematics to deduce the existence of a fourth circuit element type after resistors, capacitors and inductors, which he called a memristor, because it "remembers" changes in the current passing through it by changing its resistance. Now HP claims to have discovered the first instance of a memristor, which it created with a bi-level titanium dioxide thin-film that changes its resistance when current passes through it.

"This new circuit element solves many problems with circuitry today -- since it improves in performance as you scale it down to smaller and smaller sizes," said Chua. "Memristors will enable very small nanoscale devices to be made without generating all the excess heat that scaling down transistors is causing today."

HP has already tested the material in its ultra-high-density crossbar switches, which use nanowires to pack a record 100 Gbits onto a single die -- compared with 16 Gbits for the highest density flash memory chips extant.

"We have been looking for years for the best material to use in our ultra-dense nanowire crossbar switches, which can fit 100 billion crossbars into a square centimeter. What we have finally realized is that the ideal material is a memristor," said Williams, primary inventor of the memristor's titanium-dioxide-based material and founding director of HP's 12-year-old Information and Quantum Systems Lab, where his team perfected its formulation.

The hold-up over the last 37 years, according to professor Chua, has been a misconception that has pervaded electronic circuit theory. That misconception is that the fundamental relationship in passive circuitry is between voltage and charge. What the researchers contend is that the fundamental relationship is actually between changes-in-voltage, or flux, and charge. Such is the insight that enabled HP to invent the memristor, according to Chua and Williams.

"Electronic theorists have been using the wrong pair of variables all these years -- voltage and charge. The missing part of electronic theory was that the fundamental pair of variables is flux and charge," said Chua. "The situation is analogous to what is called "Aristotle's Law of Motion, which was wrong, because he said that force must be proportional to velocity. That misled people for 2000 years until Newton came along and pointed out that Aristotle was using the wrong variables. Newton said that force is proportional to acceleration -- the change in velocity. This is exactly the situation with electronic circuit theory today. All electronic text books have been teaching using the wrong variables -- voltage and charge--explaining away inaccuracies as anomalies. What they should have been teaching is the relationship between changes in voltage, or flux, and charge."

Previous
1 of 3
Next
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
How Enterprises Are Attacking the IT Security Enterprise
How Enterprises Are Attacking the IT Security Enterprise
To learn more about what organizations are doing to tackle attacks and threats we surveyed a group of 300 IT and infosec professionals to find out what their biggest IT security challenges are and what they're doing to defend against today's threats. Download the report to see what they're saying.
Register for InformationWeek Newsletters
White Papers
Current Issue
IT Strategies to Conquer the Cloud
Chances are your organization is adopting cloud computing in one way or another -- or in multiple ways. Understanding the skills you need and how cloud affects IT operations and networking will help you adapt.
Video
Slideshows
Twitter Feed
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.
Flash Poll