News
News
1/9/2006
12:19 PM
Connect Directly
RSS
E-Mail
50%
50%
Repost This

Nanocrystal Discovery Has Solar Cell Potential

Scientists at Los Alamos National Laboratory have discovered a process that increases the potential for using nanocrystals as solar cell materials for producing higher electrical outputs than current solar cells.

Scientists at Los Alamos National Laboratory have discovered a process that increases the potential for using nanocrystals as solar cell materials for producing higher electrical outputs than current solar cells.

The discovery, announced last week and published in the journals Nature Physics and Applied Physics Letters, sheds light on the mechanism for carrier multiplication, a phenomenon in which semiconductor nanocrystals respond to photons by producing multiple electrons. Scientists now believe that carrier multiplication can be applied to more materials than previously thought. The findings herald the possibility of new photovoltaic technologies that make use of traditional solar cell materials such as cadmium telluride.

According to Los Alamos, carrier multiplication isn't unique to lead selenide nanocrystals, but also occurs in nanocrystals of other compositions like cadmium selenide.

"Our research of carrier multiplication in previous years was really focused on analyzing the response of lead selenide nanocrystals to very short laser pulses," Los Alamos scientist Richard Schaller said in a prepared statement last week. "We discovered that absorption of a single photon could produce two or even three excited electrons. We knew, somewhat instinctively, that carrier multiplication was probably not confined to lead selenide, but we needed to pursue the question."

Scientists believe carrier multiplication occurs through instantaneous photoexcitation of multiple electrons and it relies on the unique physics of the nanoscale- size regime.

"Carrier multiplication actually relies upon very strong interactions between electrons squeezed within the tiny volume of a nanoscale semiconductor particle," lead project scientist Victor Klimov explained in a written statement. "That is why it is the particle size, not its composition that mostly determines the efficiency of the effect. In nanosize crystals, strong electron-electron interactions make a high-energy electron unstable. This electron only exists in its so-called 'virtual state' for an instant before rapidly transforming into a more stable state comprising two or more electrons."

Carrier multiplication could be used in solar-fuel technologies and specifically, the production of hydrogen by photo-catalytic water splitting, according to the team of Los Alamos researchers. The production of hydrogen by photo-catalytic water splitting requires four electrons per water molecule and its efficiency can be dramatically enhanced if multiple electrons can be produced through a single-photon absorption event.

Comment  | 
Print  | 
More Insights
The Agile Archive
The Agile Archive
When it comes to managing data, donít look at backup and archiving systems as burdens and cost centers. A well-designed archive can enhance data protection and restores, ease search and e-discovery efforts, and save money by intelligently moving data from expensive primary storage systems.
Register for InformationWeek Newsletters
White Papers
Current Issue
InformationWeek Elite 100 - 2014
Our InformationWeek Elite 100 issue -- our 26th ranking of technology innovators -- shines a spotlight on businesses that are succeeding because of their digital strategies. We take a close at look at the top five companies in this year's ranking and the eight winners of our Business Innovation awards, and offer 20 great ideas that you can use in your company. We also provide a ranked list of our Elite 100 innovators.
Video
Slideshows
Twitter Feed
Audio Interviews
Archived Audio Interviews
GE is a leader in combining connected devices and advanced analytics in pursuit of practical goals like less downtime, lower operating costs, and higher throughput. At GIO Power & Water, CIO Jim Fowler is part of the team exploring how to apply these techniques to some of the world's essential infrastructure, from power plants to water treatment systems. Join us, and bring your questions, as we talk about what's ahead.