Penn Uses E-Beams To Create 'Nanogaps' - InformationWeek
IoT
IoT
News
News
3/14/2006
10:40 AM
50%
50%
RELATED EVENTS
Moving UEBA Beyond the Ground Floor
Sep 20, 2017
This webinar will provide the details you need about UEBA so you can make the decisions on how bes ...Read More>>

Penn Uses E-Beams To Create 'Nanogaps'

Researchers at the University of Pennsylvania claim to have bridged a major obstruction in the creation of nanoscale electronics by developing a method of creating tiny gaps between electrodes.

SAN JOSE, Calif. — Researchers at the University of Pennsylvania claim that they have bridged a major obstruction in the creation of nanoscale electronics by developing a method of creating tiny gaps between electrodes.

The development of so-called "nanogaps" will make it possible to make electrical contact to structures in the nanoscale world. The advent of “nanogaps” could have applications such as electronics, quantum computing and gene reading. In addition, nanoscale electronics could be used to create faster storage devices, semiconductors and microprocessor chips.

Researchers have already used “nanogaps” to measure electrical charge through several coupled nanocrystals, which are also referred to as quantum dots.

This research was funded through grants from the National Science Foundation (NSF), the Office of Naval Research and the American Chemical Society.

"A number of people have proposed nanoelectronic devices that use nanogaps, but nobody has been able to create nanogaps reliably in practice," said Marija Drndic, an assistant professor in Penn's Department of Physics and Astronomy in the School of Arts and Sciences, in a statement.

"For the first time, we were able to make the world's smallest and cleanest nanometer gaps that can be imaged directly with atomic resolution,” Drndic said. “These nanogaps can be used to electrically connect small objects, such as an individual molecule."

To create these gaps, the university used electron-beam lithography. Their research succeeded where previous efforts failed because of the type of surface they used, that is, thin layers of silicon nitride.

"Electon beam lithography works on small scale, but it is limited down to about 10 nanometers." Drndic said. "It is not like drawing a line on a page; as an electron beam hits a material the electrons tend to scatter forward and backward, which makes it difficult to create tiny lines."

While other researchers focused on breaking small wires to create nanogaps, similar to how a fuse can be popped open, the Penn researchers went the opposite route, making the gaps directly.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
How Enterprises Are Attacking the IT Security Enterprise
How Enterprises Are Attacking the IT Security Enterprise
To learn more about what organizations are doing to tackle attacks and threats we surveyed a group of 300 IT and infosec professionals to find out what their biggest IT security challenges are and what they're doing to defend against today's threats. Download the report to see what they're saying.
Register for InformationWeek Newsletters
White Papers
Current Issue
IT Strategies to Conquer the Cloud
Chances are your organization is adopting cloud computing in one way or another -- or in multiple ways. Understanding the skills you need and how cloud affects IT operations and networking will help you adapt.
Video
Slideshows
Twitter Feed
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.
Flash Poll