Software // Information Management
Commentary
10/29/2007
04:31 PM
Seth Grimes
Seth Grimes
Commentary
Connect Directly
Twitter
RSS
E-Mail
50%
50%
Repost This

BI as Commodity Technology: The Information Angle

BI is complex, simultaneously software, transformational work practices, and business information. Consider: What value is reporting or OLAP or data mining (software) that doesn't tap whatever data is relevant to produce business insights (information) that can help you restructure, realign, or optimize business operations (practices)? We need to examine all three, complementary aspects of business intelligence: software, information, and practices. Let's start with information, with BI sou

I promised to follow an earlier article that looked at database management systems as a commodity technology with a similar assessment of business intelligence. In drafting the promised article, however, I realized that I couldn't limit my evaluation to the software side of BI.

BI is complex. It is simultaneously software, transformational work practices, and business information. Admittedly, I am going far beyond IE Editor in Chief Doug Henschen's take on BI, but consider: What value is reporting or OLAP or data mining — software — that doesn't tap all data that contributes to relevant business insights — information — that can help you restructure, realign, or optimize business operations — practices? To understand if BI is a commodity technology, we need to examine all three, complementary aspects of business intelligence: software, information, and practices.

Let's start with information, with BI sources and BI results.Is analytical information a commodity in the sense that you, given your business role, can access and analyze all relevant data to create the guidance you need? The answer is decidedly no.

BI has only recently come to grips with a number of major source-data challenges. Data quality, semantics (meaning), integration, and uncertainty top the list. I won't elaborate other than to guess that you're probably not even thinking about the uncertainty (and lineage) issue, about the utility of measuring and capturing accuracy and trust-worthiness and factoring it into calculations. This uncertainty question is similar to the data-quality question but they are not identical. Data quality most frequently involves how well the data is described rather than the properties of the data values themselves.

And BI has only recently started to accommodate data from "unstructured" sources and from streaming, distributed sources. Complex-event processing (CEP) and data-stream processing tackle the latter challenge, and on the "unstructured" side, we're doing alright with text-sourced data although ability to extract from and analyze images and audio is primitive.

With text analytics in particular, we're finally getting back to BI's origins, to BI's earliest definition as put forward by Hans Peter Luhn in his seminal 1958 IBM Journal paper, "A Business Intelligence System." Luhn's interest in analyzing scientific and technical literature was reflected in the goal he articulated for a BI system of "auto-abstracting and auto-encoding of documents and ... creating interest profiles for each of the 'action points' in an organization." The aim was decision support; the source was text rather than numbers. But numbers are "low-hanging fruit" compared to text, far easier to collect and analyze. Arguably we now have the routine numbers problem licked so we're finally extending BI to other than numbers, e.g., text per Luhn's original vision for BI systems, and to other than routine numbers, e.g., to data and event streams.

On the output side, BI's short-comings as a means of producing actionable information have contributed to the emergence of a new practice, enterprise decision management.

It is not yet practical to access and analyze all data to relevant to many business decision-making needs. Core, by-the-numbers BI is well understood, but BI has a long way to go before it will produce much-talked-about 360o, all-encompassing enterprise views.


Seth Grimes is an analytics strategist with Washington DC based Alta Plana Corporation. He consults on data management and analysis systems.BI is complex, simultaneously software, transformational work practices, and business information. Consider: What value is reporting or OLAP or data mining (software) that doesn't tap whatever data is relevant to produce business insights (information) that can help you restructure, realign, or optimize business operations (practices)? We need to examine all three, complementary aspects of business intelligence: software, information, and practices. Let's start with information, with BI sources and BI results.

Comment  | 
Print  | 
More Insights
The Agile Archive
The Agile Archive
When it comes to managing data, donít look at backup and archiving systems as burdens and cost centers. A well-designed archive can enhance data protection and restores, ease search and e-discovery efforts, and save money by intelligently moving data from expensive primary storage systems.
Register for InformationWeek Newsletters
White Papers
Current Issue
InformationWeek Elite 100 - 2014
Our InformationWeek Elite 100 issue -- our 26th ranking of technology innovators -- shines a spotlight on businesses that are succeeding because of their digital strategies. We take a close at look at the top five companies in this year's ranking and the eight winners of our Business Innovation awards, and offer 20 great ideas that you can use in your company. We also provide a ranked list of our Elite 100 innovators.
Video
Slideshows
Twitter Feed
Audio Interviews
Archived Audio Interviews
GE is a leader in combining connected devices and advanced analytics in pursuit of practical goals like less downtime, lower operating costs, and higher throughput. At GIO Power & Water, CIO Jim Fowler is part of the team exploring how to apply these techniques to some of the world's essential infrastructure, from power plants to water treatment systems. Join us, and bring your questions, as we talk about what's ahead.