Universities Snatch Up Unused Cable For High-Speed Networks - InformationWeek
10:35 AM

Universities Snatch Up Unused Cable For High-Speed Networks

The most ambitious and high-profile of these endeavors is the National LambdaRail, a large fiber infrastructure capable of connecting more than 25 U.S. cities at speeds in multiples of 10 Gbps.

Now our traffic and connections have diversified to meet the growing demand for unique connections. WiscNet still maintains an OC-12 connection to support commodity Internet traffic for the University of Wisconsin's 26 campuses, as well as other public institutions, such as local school systems serving grades K-12. WiscNet also maintains diversified routes to the Internet through additional high-speed connections in different locations in Wisconsin.

Large data interchanges with national and international research collaborators mean network demands at UW-Madison have exceeded the needs of other members of WiscNet. As a result, a DWDM optical link carries our Internet2 traffic over a 10-Gbps connection. UW-Madison shares this network connectivity with our WiscNet partners. Before the private fiber connection to Chicago, we would have had to bid out our 10-Gbps network project to a commercial ISP. Based on initial discussions with our state-contracted provider, we believe the long-term cost would have been an order of magnitude more than our implementation with our peer partnerships.

With DWDM, we can add capacity for a fraction of the initial implementation cost. In combination with our current equipment, one pair of single-mode fiber can carry 32 wavelengths--that's 32 times 10 Gbps. As the Northern Tier Network Consortium project continues to identify fiber paths farther to the west, the same fiber pairs and equipment in use by UW-Madison can be used to carry other institutions' traffic at different wavelengths.

A recently completed project makes a direct 10-Gbps network connection from the UW-Madison high-energy physics department to the data sets generated by CERN CMS, a scientific project at the Fermi National Accelerator Lab in Illinois. This project is expected to generate up to 10 petabytes of data per year. These large data sets are propagated from CERN out to Tier 1 data stores. UW-Madison is a Tier 2 site that fetches the data from the Tier 1 center at Fermilab in Batavia, Ill.

National LambdaRail could connect more than two dozen cities.

(click image for larger view)

National LambdaRail could connect more than two dozen cities.
Once the physics department link is operational, we expect to draw sustained data feeds at rates of more than 8 Gbps, collecting every bit of data to ensure that experimental readings are accurate. Once in steady state, the data drawn by the physics department is expected to decrease but will continue to keep that pipe pretty full. If you're wondering where we keep all this data, we take advantage of a caching file system called dCache, implemented on several Apple Xserve boxes with XRaid storage.

Note that the Fermilab already receives this data directly from the CMS project and isn't the only lab getting that first distribution. New 10-Gbps and faster links enable data sharing at a level never before possible.

Local Partners

Once the Boreas-Net is completed, regional higher-education partners will be able to light up connectivity to the LambdaRail and Internet2 connecting points. We'll also be able to directly peer with neighboring universities in bandwidths that are multiples of 10 Gbps and share large data sets as though they were stored locally on our campus.

Beyond the standard network interchange, possible uses for those private fiber connections are endless. For instance, partner institutions could make agreements to supply each other with server platforms and co-locate the other's backup data center. The network would have a slight latency, but bandwidth of 10 Gbps should be able to handle most needs. If not, simply add another lambda.

Because current gear--Cisco ONS 15454 MSTP--supports 32 wavelengths, many institutions can share the same pair of fiber for any variety of geographic paths, as well as any variety of network traffic. Technological advances will let us continue to put more wavelengths on a single pair of fiber strands.

2 of 2
Comment  | 
Print  | 
More Insights
Newest First  |  Oldest First  |  Threaded View
How Enterprises Are Attacking the IT Security Enterprise
How Enterprises Are Attacking the IT Security Enterprise
To learn more about what organizations are doing to tackle attacks and threats we surveyed a group of 300 IT and infosec professionals to find out what their biggest IT security challenges are and what they're doing to defend against today's threats. Download the report to see what they're saying.
Register for InformationWeek Newsletters
White Papers
Current Issue
2017 State of the Cloud Report
As the use of public cloud becomes a given, IT leaders must navigate the transition and advocate for management tools or architectures that allow them to realize the benefits they seek. Download this report to explore the issues and how to best leverage the cloud moving forward.
Twitter Feed
InformationWeek Radio
Archived InformationWeek Radio
Join us for a roundup of the top stories on InformationWeek.com for the week of November 6, 2016. We'll be talking with the InformationWeek.com editors and correspondents who brought you the top stories of the week to get the "story behind the story."
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.
Flash Poll