14 Traits Of The Best Data Scientists - InformationWeek

InformationWeek is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT
IoT
Data Management
News
9/26/2016
07:06 AM
Lisa Morgan
Lisa Morgan
Slideshows
Connect Directly
Twitter
RSS
E-Mail
100%
0%

14 Traits Of The Best Data Scientists

Looking for a unicorn? Get in line. Actual data scientists are in high demand, and there's not enough of them to go around. If you want to identify the right talent, consider these tips.
Previous
1 of 15
Next

(Image: ismagilov/iStockphoto)

(Image: ismagilov/iStockphoto)

If your company is trying to hire a data scientist, proceed with caution. Given the shortage of data science talent, more candidates are assuming the title hoping to command a higher salary. Actual data scientists are much harder to find, and they're harder to keep because they're in high demand.

"The way I define a data scientist is somebody who knows programming better than a statistician and more statistics than a programmer. Both of those traits are table stakes," said Anthony Goldbloom, cofounder and CEO of data science competition platform Kaggle, in an interview.

Business domain knowledge is also important, since data scientists need to understand the problem they're solving and its context. Increasingly, organizations recruiting data scientists are also looking for machine learning experience, since the capability is necessary to keep pace with data growth, particularly with the addition of IoT devices. Data scientists should also be, but aren't always, effective communicators.

"You have to understand how to talk to people in a way that's simple and comprehensible to them while maintaining accuracy," said Alexander Isakov, CEO of business data solutions and strategy firm Pallantius. "CEOs and senior management don't care if we use a random forest or Oracle Delphi. As long as we clearly explain what's going on and how to make it actionable."

Everyone wants to hire unicorns -- those rare beings who are equally good at math, statistics, computer science, domain knowledge, communication, and perhaps machine learning. Since hiring a unicorn is difficult at best, organizations need to make compromises. They need to be mindful of the compromises they're making and why.

[See 10 Programming Languages and Tools Data Scientists Use Now.]

"You need to start by answering this simple question: 'What problem are you trying to solve?' Once you know what your business goal is, you can start both looking for the talent you need and the right tools," said Judith Hurwitz, president and CEO of consulting firm Hurwitz & Associates.

If you're considering hiring a data scientist, why not consider building a data science capability?  It may well be a wiser long-term strategy.

"If you're adding talent, then you want to be very conscious of building a rounded team," said Wilds Ross, principal of data and analytics at audit, tax, and advisory service firm KPMG.

"You want to have some statistics, data engineering, optimization, [and] computer science. You're going to want to define what your objectives are in deploying a data science team in your organization and decide what we're really going to work on in the business to improve."

The best data scientists have a few traits and qualifications worth noting. We've identified some of them in the next pages. What would you add to our list?

Lisa Morgan is a freelance writer who covers big data and BI for InformationWeek. She has contributed articles, reports, and other types of content to various publications and sites ranging from SD Times to the Economist Intelligent Unit. Frequent areas of coverage include ... View Full Bio

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.
Previous
1 of 15
Next
Comment  | 
Print  | 
More Insights
Slideshows
9 Steps Toward Ethical AI
Cynthia Harvey, Freelance Journalist, InformationWeek,  5/15/2019
Commentary
How to Assess Digital Transformation Efforts
Lisa Morgan, Freelance Writer,  5/14/2019
Commentary
Is AutoML the Answer to the Data Science Skills Shortage?
Guest Commentary, Guest Commentary,  5/10/2019
White Papers
Register for InformationWeek Newsletters
2018 State of the Cloud
2018 State of the Cloud
Cloud adoption is growing, but how are organizations taking advantage of it? Interop ITX and InformationWeek surveyed technology decision-makers to find out, read this report to discover what they had to say!
Video
Current Issue
A New World of IT Management in 2019
This IT Trend Report highlights how several years of developments in technology and business strategies have led to a subsequent wave of changes in the role of an IT organization, how CIOs and other IT leaders approach management, in addition to the jobs of many IT professionals up and down the org chart.
Slideshows
Flash Poll