3 Cool AI Projects - InformationWeek
IoT
IoT
Data Management
Commentary
4/18/2017
12:05 PM
Lisa Morgan
Lisa Morgan
Commentary
Connect Directly
Twitter
RSS
50%
50%

3 Cool AI Projects

Are you ready for AI and machine learning? Here's an overview of three use cases to give you a flavor of just what is possible.

AI is all around us, quietly working in the background or interacting with us via a number of different devices. Various industries are using AI for specific reasons such as ensuring that flights arrive on time or irrigating fields better and more economically.

Over time, our interactions with AI are becoming more sophisticated. In fact, in the not-too-distant future we'll have personal digital assistants that know more about us than we know about ourselves.

For now, there are countless AI projects popping up in commercial, industrial and academic settings. Following are a few examples of projects with an extra cool factor.

(Image: Pixabay/Geralt)

(Image: Pixabay/Geralt)

Get Credit. Now.

Who among us hasn't sat in a car dealership, waiting for the finance person to run a credit check and provide us with financing options? We've also stood in lines at stores, filling out credit applications, much to the dismay of those standing behind us in line. Experian DataLabs is working to change all that.

Experian created Experian DataLabs to experiment with the help of clients and partners. Located in San Diego, London, and Sao Paulo, Experian DataLabs employ scientists and software engineers, 70% of whom are Ph.Ds. Most of these professionals have backgrounds in machine learning.

"We're going into the mobile market where we're pulling together data, mobile, and some analytics work," said Eric Haller, EVP of Experianís Global DataLabs. "It's cutting-edge machine learning which will allow for instant credit on your phone instead of applying for credit at the cash register."

That goes for getting credit at car dealerships, too. Simply text a code to the car manufacturer and get the credit you need using your smartphone. Experian DataLabs is also combining the idea with Google Home, so you can shop for a car, and when you find one you like, you can ask Google Home for instant credit.

There's no commercial product available yet, but a pilot will begin this summer.

AI About AI

Vicarious is attempting achieve human-level intelligence in vision, language, and motor control. It is taking advantage of neuroscience to reduce the amount of input machine learning requires to achieve a desired result. At the moment, Vicarious is focusing on mainstream deep learning and computer vision.

It's concept is compelling to many investors. So far, the company has received $70 million from corporations, venture capitalists and affluent private investors including Ashton Kutcher, Jeff Bezos, and Elon Musk.

On its website, Vicarious wisely points out the downsides of model optimization ad infinitum that results in only incremental improvements. So, instead of trying to beat a state-of-the-art algorithm, Vicarious is to trying to identify and characterize the source of errors.

Draft Better Basketball Players

The Toronto Raptors is working with IBM Watson to identify what skills the team needs and which prospective players can best fill the gap. It is also pre-screening each potential recruits' personality traits and character.

During the recruiting process, Watson helps select the best players and it also suggests ideal trade scenarios. While prospecting, scouts enter data into a platform to record their observations. The information is later used by Watson to evaluate players.

And, a Lesson in All of This

Vicarious is using unsupervised machine learning. The Toronto Raptors are using supervised learning, but perhaps not exclusively. If you don't know the difference between the two yet, it's important to know. Unsupervised learning looks for patterns. Supervised learning is presented with classifications such as these are the characteristics of "good" traits and these are the characteristics of "bad" traits.

Supervised and unsupervised learning are not mutually exclusive since unsupervised learning needs to start somewhere. However, supervised learning is more comfortable to humans with egos and biases because we are used to giving machines a set of rules (programming). It takes a strong ego, curiosity or both to accept that some of the most intriguing findings can come from unsupervised learning because it is not constrained by human biases. For example, we may define the world in terms of red, yellow and blue. Unsupervised learning could point out crimson, vermillion, banana, canary, cobalt, lapis and more.

What Would You Do with AI?

I'd build two androids named Adam and Eve. If Apple acquired my fictional company, just imagine the headlines! How about you? What would you build? What problem(s) would you try to solve? We'd love to hear your ideas in the comments section.

Lisa Morgan is a freelance writer who covers big data and BI for InformationWeek. She has contributed articles, reports, and other types of content to various publications and sites ranging from SD Times to the Economist Intelligent Unit. Frequent areas of coverage include ... View Full Bio
We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
2018 State of the Cloud
2018 State of the Cloud
Cloud adoption is growing, but how are organizations taking advantage of it? Interop ITX and InformationWeek surveyed technology decision-makers to find out, read this report to discover what they had to say!
Commentary
AI & Machine Learning: An Enterprise Guide
James M. Connolly, Executive Managing Editor, InformationWeekEditor in Chief,  9/27/2018
Commentary
How to Retain Your Best IT Workers
John Edwards, Technology Journalist & Author,  9/26/2018
Slideshows
10 Highest-Paying IT Job Skills
Cynthia Harvey, Contributor, NetworkComputing,  9/12/2018
Register for InformationWeek Newsletters
Video
Current Issue
The Next Generation of IT Support
The workforce is changing as businesses become global and technology erodes geographical and physical barriers.IT organizations are critical to enabling this transition and can utilize next-generation tools and strategies to provide world-class support regardless of location, platform or device
White Papers
Slideshows
Twitter Feed
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.
Sponsored Video
Flash Poll