5 Keys to Asking Better Questions of Data Scientists - InformationWeek

InformationWeek is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Data Management // Big Data Analytics
02:00 PM
Lisa Morgan
Lisa Morgan
Connect Directly

5 Keys to Asking Better Questions of Data Scientists

Some enterprises struggle to drive business value from data science efforts because the business and data scientists are not communicating or collaborating well. Here are five things you can do to improve the cross-functional relationships and ROI.
1 of 6

Companies in all industry sectors have been clamoring for data scientists for the past couple of years, but some of them struggle to drive value from their efforts once they have data science talent on board. Common scenarios are shoving data scientists into a corner, hoping that they'll to do what they do best. In some cases, there's little or no alignment with business objectives and strategy, and not enough cross-functional collaboration.

As a result, data science can become an academic exercise that's not really driving business value or not driving as much business value as it could. It's not that data science doesn't work; data science and data scientists need to be integrated into the business.

Even when data scientists and business leaders come together, there are often disconnects in thought processes and language. "Real" data scientists (the ones with PhDs or master's degrees in math, statistics, and related fields) are often characterized as technically brilliant but poor communicators.

Business leaders can also cause communications to break down, however. The latest in-vogue business jargon may sound cool, but it may not actually convey the kind of substance and context data scientists need to do their jobs well.

"I appreciate the conversation. It’s the silence that bothers me," said David Goldberg, VP of Data Analytics at Prudential Financial. "We have people who are not so quantitatively oriented who see a lot of numbers and may be afraid of asking something that doesn't seem that relevant. I think there are some people who get intimidated by numbers."

Following are a few things you can do to drive more value from your data science efforts.

Image: Pixabay
Image: Pixabay

Lisa Morgan is a freelance writer who covers big data and BI for InformationWeek. She has contributed articles, reports, and other types of content to various publications and sites ranging from SD Times to the Economist Intelligent Unit. Frequent areas of coverage include ... View Full Bio

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.
1 of 6
Comment  | 
Print  | 
More Insights
Study Proposes 5 Primary Traits of Innovation Leaders
Joao-Pierre S. Ruth, Senior Writer,  11/8/2019
Top-Paying U.S. Cities for Data Scientists and Data Analysts
Cynthia Harvey, Freelance Journalist, InformationWeek,  11/5/2019
10 Strategic Technology Trends for 2020
Jessica Davis, Senior Editor, Enterprise Apps,  11/1/2019
White Papers
Register for InformationWeek Newsletters
Current Issue
Getting Started With Emerging Technologies
Looking to help your enterprise IT team ease the stress of putting new/emerging technologies such as AI, machine learning and IoT to work for their organizations? There are a few ways to get off on the right foot. In this report we share some expert advice on how to approach some of these seemingly daunting tech challenges.
Flash Poll