Can Big Data Trump Doping In Sports? - InformationWeek

InformationWeek is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT
IoT
Data Management // Big Data Analytics
News
6/28/2013
06:41 PM
Connect Directly
Google+
RSS
E-Mail
50%
50%

Can Big Data Trump Doping In Sports?

Massive amounts of data, along with Hadoop and visualization tools, helped the U.S. women's cycling team earn silver at the London 2012 Olympic Games.

5 Big Wishes For Big Data Deployments
5 Big Wishes For Big Data Deployments
(click image for larger view and for slideshow)

Disgraced cyclist Lance Armstrong made headlines last week when he told French newspaper Le Monde that he couldn't have won the Tour de France without doping. But velodrome cyclist and entrepreneur Sky Christopherson, speaking Thursday at the Hadoop Summit in San Jose, Calif., offered a more hopeful perspective: Racers can win with big data analysis instead of performance-enhancing drugs.

Christopherson was a member of the U.S. Cycling Team and alternate on the 1996 and 2000 U.S. Olympic teams. In 2011, using a data-intensive "digital health" program designed to help competitive athletes achieve drug-free performance breakthroughs, Christopherson broke a world record in the 200-meter velodrome sprint.

"Doping is a huge issue right now in sports," Christopherson told Hadoop Summit attendees in his June 27 keynote. "And the reason it's been abused by athletes is that it accelerates recovery. At this level of athletics, everyone is training hard enough. The key is: How do you recover faster?"

[ The more data the bigger the blunders? Read Big Data's Human Error Problem. ]

Optimized Athlete, a company that Christopherson co-founded with his wife Tamara in early 2012, helped the U.S. women's cycling team shave several seconds off their racing times, an improvement that earned the team a silver medal at the 2012 Summer Olympics in London.

Data analysis, including machine sensors and mobile devices, played a major role in this effort.

"I think the biggest difference most recently is you have this flood of sensors hitting the market, wireless sensors that connect with a smartphone. And we're able to quantify parts of our physiology and our psychology that we never could before," said Christopherson in a promotional video proceeding his keynote.

"The U.S. Women's Cycling Team was in a tough position because going into the London Olympics in 2012 they were five seconds away from even being considered for the medals. And a lot of people thought that a near-impossible task, you know, to improve this huge margin of time and be competitive in the games," he said.

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.
Previous
1 of 2
Next
Comment  | 
Print  | 
More Insights
Slideshows
What Digital Transformation Is (And Isn't)
Cynthia Harvey, Freelance Journalist, InformationWeek,  12/4/2019
Commentary
Watch Out for New Barriers to Faster Software Development
Lisa Morgan, Freelance Writer,  12/3/2019
Commentary
If DevOps Is So Awesome, Why Is Your Initiative Failing?
Guest Commentary, Guest Commentary,  12/2/2019
White Papers
Register for InformationWeek Newsletters
Video
Current Issue
Getting Started With Emerging Technologies
Looking to help your enterprise IT team ease the stress of putting new/emerging technologies such as AI, machine learning and IoT to work for their organizations? There are a few ways to get off on the right foot. In this report we share some expert advice on how to approach some of these seemingly daunting tech challenges.
Slideshows
Flash Poll