Structuring Your Data Team: 9 Best Practices - InformationWeek
Data Management // Big Data Analytics
08:05 AM
Lisa Morgan
Lisa Morgan

Structuring Your Data Team: 9 Best Practices

Hire or grow from within? Structuring a data team isn't easy because there's no one way to do it right. Here's a look at some pitfalls and best practices.
1 of 10

(Image: skeeze via Pixabay)

(Image: skeeze via Pixabay)

Structuring a solid data team would be a lot easier if there were a common blueprint that worked equally well for all organizations. However, since each organization is unique and change is constant, companies must continually reassess their needs.

Technology hype and competitive pressures tend to frustrate strategic thinking, however. Instead of defining goals and identifying problems that need to be solved up front, organizations sometimes acquire technology or talent without a plan, which tends to negatively affect ROI.

"You need to have a really well-defined business case beforehand," said Jonathan Foley, VP of science at a recruiting software provider Gild, in an interview. "Companies are building out data science teams before they need them, before they understand what data science is and what is going to be the desired effect on the business. It's a me-too phenomenon where it's seen as something that can have a competitive advantage. But unless the leadership really understands the expected outcome of having data science and machine learning, it just becomes a difficult task. You don't know who to hire and you don't know how to manage the team once you have it."

[Are your data science efforts a success? Find out. Read 8 Ways You're Failing At Data Science.]

Data team structures vary significantly from company to company, which further complicates the issue. They may consist of internal and external resources, faithful employees, and new hires, or a combination of those and other things. Some organizations have multiple data teams, while others have comparatively modest resources.

There are centralized data teams, distributed data teams, and hybrids of the two. Despite the differences, there are some common best practices that can help just about any organization get more from its investments, regardless of size, industry, or budget. Here are a few things to consider.

**Elite 100 2016: DEADLINE EXTENDED TO JAN. 15, 2016** There's still time to be a part of the prestigious InformationWeek Elite 100! Submit your company's application by Jan. 15, 2016. You'll find instructions and a submission form here: InformationWeek's Elite 100 2016.

Lisa Morgan is a freelance writer who covers big data and BI for InformationWeek. She has contributed articles, reports, and other types of content to various publications and sites ranging from SD Times to the Economist Intelligent Unit. Frequent areas of coverage include ... View Full Bio

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.
1 of 10
Comment  | 
Print  | 
More Insights
Newest First  |  Oldest First  |  Threaded View
User Rank: Ninja
1/1/2016 | 11:16:16 PM
interesting way to look at Data
this days in the board rooms I hear we must have better way to analyze data...

each time I learn something new on informationweek - thank you :)
Register for InformationWeek Newsletters
White Papers
Current Issue
Cybersecurity Strategies for the Digital Era
At its core, digital business relies on strong security practices. In addition, leveraging security intelligence and integrating security with operations and developer teams can help organizations push the boundaries of innovation.
Twitter Feed
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.
Flash Poll