Machine Learning's Greatest Weakness is Humans - InformationWeek

InformationWeek is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT
IoT
Data Management // Big Data Analytics
Commentary
6/8/2017
07:00 AM
Lisa Morgan
Lisa Morgan
Commentary
Connect Directly
Twitter
RSS
50%
50%

Machine Learning's Greatest Weakness is Humans

Modeling artificial intelligence on the human brain is modeling it on a flawed model.

Machine learning-- deep learning and cognitive computing in particular-- attempt to model the human brain. That seems logical because the most effective way to establish bilateral understanding with humans is to mimic them. As we have observed from everyday experiences, machine intelligence isn't perfect and neither is human intelligence.

Still, understanding human behavior and emotion is critical if machines are going to mimic humans well. Technologists know this, so they're working hard to improve natural language processing, computer vision, speech recognition, and other things that will enable machines to better understand humans behave more like humans

I imagine that machines will never emulate humans perfectly because they will be able to rapidly identify the flaws in our thinking and behavior and improve upon them. To behave exactly like us would be illogical and ill-advised.

From an analytical perspective, I find all of this fascinating because human behavior is linear and non-linear, rational and irrational, logical and illogical. If you study us at various levels of aggregation, it's possible to see patterns in the way humans behave as a species, why we fall into certain groups and why behave the way we do as individuals. I think it would be very interesting to compare what machines have to say about all of that with what psychologists, sociologists, and anthropologists have to say.

Right now we're at the point where we believe that machines need to understand human intelligence. Conversely, humans need to understand machine intelligence.

Why AI is Flawed

Human brain function is not infallible. Our flaws present challenges for machine learning, namely, machines have the capacity to make the same mistakes we do and exhibit the same biases we do, only faster. Microsoft's infamous twitter bot is a good example of that.

Then, when you model artificial emotional intelligence based on human emotion, the results can be entertaining, inciting or even dangerous.

Training machines, whether for supervised or unsupervised learning, begins with human input at least for now. In the future, the necessity for that will diminish because a lot of people will be teaching machines the same things. The redundancy will indicate patterns that are easily recognizable, repeatable and reusable. Open source machine learning libraries are already available, but there will be many more that approximate some aspect of human brain function, cognition, decision-making, reasoning, sensing and much more.

Slowly but surely, we're creating machines in our own image.

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.
Comment  | 
Print  | 
More Insights
News
COVID-19: Using Data to Map Infections, Hospital Beds, and More
Jessica Davis, Senior Editor, Enterprise Apps,  3/25/2020
Commentary
Enterprise Guide to Robotic Process Automation
Cathleen Gagne, Managing Editor, InformationWeek,  3/23/2020
Slideshows
How Startup Innovation Can Help Enterprises Face COVID-19
Joao-Pierre S. Ruth, Senior Writer,  3/24/2020
White Papers
Register for InformationWeek Newsletters
Video
Current Issue
IT Careers: Tech Drives Constant Change
Advances in information technology and management concepts mean that IT professionals must update their skill sets, even their career goals on an almost yearly basis. In this IT Trend Report, experts share advice on how IT pros can keep up with this every-changing job market. Read it today!
Slideshows
Flash Poll