Purdue IT Staff Builds Supercomputer In A Half Day - InformationWeek
Infrastructure // PC & Servers
09:20 PM
Connect Directly

Purdue IT Staff Builds Supercomputer In A Half Day

The new machine is estimated to be capable of 60 teraflops per second, which places it as number 40 on today's Top 500 computer list.

Purdue University's IT department dedicated May 5 to assembling Dell PowerEdge servers into a campus supercomputer to replace its existing research unit. It had the new machine assembled from component parts by noon, and at 1 p.m., 500 nodes were churning out results.

Dell rack mount server boxes stacked high under the big tent outside Purdue's Math building. (Click to see all 7 pictures.)
(click for image gallery)

"There were no problems installing the hardware or software. There is no cloud to accompany this silver lining," said Gerry McCartney, university CIO, who had the idea of a staff-assembled supercomputer. "The assembly was much faster than we expected. By noon we were doing science," he said in the Purdue News Service summary of the event.

"We didn't fly in engineers or hire specialized technicians. We were able to do it with our own IT staff in about four hours," he said.

The new machine is estimated to be capable of 60 teraflops per second, or 60 trillion operations, which places the Purdue machine as number 40 on today's Top 500 computer list. The National Science Foundation estimated that supercomputer, called Steele, is capable of executing 40 teraflops on its supercomputer user's portal, the TeraGrid User Portal at http//portal.teragrid.org.

McCartney's reference to a silver lining meant, among other things, that the Purdue staff had good weather for its computer-building event. Wind and rain might have played havoc with exposed computer parts sitting outside, as 812 server boxes were unpacked under a large picnic awning in the parking lot next to the Purdue Mathematics Building. The servers were unpacked, then moved on carts to the Math building's basement.

The unpacking produced 6,000 pounds of cardboard boxes and packing and 600 pounds of Styrofoam, all of which were carried by hand to a nearby garbage truck for compacting. The university's Information Technology department had arranged for the material to be recycled, said Steve Tally, a writer for the Purdue News Service.

The process of building the supercomputer was speeded up by the help of a team of technicians sent by Indiana University, one of Purdue's arch rivals on the playing field. "We don't routinely get the opportunity to work together in person. Our meeting today was enjoyable," and may lead to future collaborative efforts, said Matt Link, director of research technology systems at Indiana.

Twenty-five faculty members pooled research grants to come up with 75% of the funding for the supercomputer, dubbed Steele for a former faculty member and director of the university computing center, John Steele.

McCartney inherited a research computer, Lear, as he came into the CIO's job. It had been preceded by MacBeth and Hamlet. He decided to change the naming convention from Shakespearean tragedies to honor former members of the department, Tally said.

One of the researchers who will use Steele looked on as the supercomputer was built. Ashlie Martini, assistant professor of mechanical engineering, will use Steele to study friction at the molecular level. Rudolf Eigenmann, professor of electrical and computer engineering, said Steele will also be used in the search for new drugs and materials, the study of weather patterns and global warming, and the design of new aircraft.

Dwight McKay, Purdue’s director of systems engineering, said Steele is running Red Hat Enterprise Linux 4.0. It’s running a number of scientific programming libraries, typical scientific applications, and the cfengine, an open source management tool for running a large cluster.

Each of Steele's nodes is a 1u server or takes up one rack mount slot, and supplies two Xeon processors, each using four-cores. That gives Steele a total of 6,496 cores, compared to predecessor Lear's 1,024 cores.

The 64-bit Xeon processors in Steele run at Intel's high end of 2.33 GHz. Each of the 812 servers is capable of having between 16 and 32 Gbytes of memory, according to the NSF site.

It is the largest supercomputer on a Big Ten campus, except for those built by the National Science Foundation as part of a National Supercomputer Center. Next door to Indiana's Purdue is the National Center For Supercomputing Applications at the University of Illinois at Champaign/Urbana.

Comment  | 
Print  | 
More Insights
Newest First  |  Oldest First  |  Threaded View
How Enterprises Are Attacking the IT Security Enterprise
How Enterprises Are Attacking the IT Security Enterprise
To learn more about what organizations are doing to tackle attacks and threats we surveyed a group of 300 IT and infosec professionals to find out what their biggest IT security challenges are and what they're doing to defend against today's threats. Download the report to see what they're saying.
Register for InformationWeek Newsletters
White Papers
Current Issue
Digital Transformation Myths & Truths
Transformation is on every IT organization's to-do list, but effectively transforming IT means a major shift in technology as well as business models and culture. In this IT Trend Report, we examine some of the misconceptions of digital transformation and look at steps you can take to succeed technically and culturally.
Twitter Feed
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.
Flash Poll