How to Define Accuracy in Analytics for Business - InformationWeek
IoT
IoT
Software // Information Management
Commentary
5/11/2010
11:46 AM
Seth Grimes
Seth Grimes
Commentary
Connect Directly
Twitter
RSS
E-Mail
50%
50%
RELATED EVENTS
[Dark Reading Crash Course] Finding & Fixing Application Security Vulnerabilitie
Sep 14, 2017
Hear from a top applications security expert as he discusses key practices for scanning and securi ...Read More>>

How to Define Accuracy in Analytics for Business

For information retrieval and analytics purposes, we need a broad definition of "accuracy."

Esteban Kolsky, a customer-strategies research analyst, has blogged for semantic-technologies vendor Attensity on How Accuracy in Analytics Matters for Businesses. It's a thought-provoking article, yet a central statement of his calls for exploration, that "The only way to measure accuracy is by comparing the results of the computer analysis to similar analysis done by humans." There's more to accuracy, and more to computer analysis, than you might think.Kolsky's topic is social-media analytics. His focus is the subjective content of on-line text: feelings rather than facts. Subjective content -- attitude, opinion, and even emotion -- is different from objective facts. Subjectivity is uniquely human, often situational, and culturally linked. We all know that no two people will always agree on any matter of opinion or attitude. No two people "pick the same" (in Kolsky's words), even when it comes to a classification as seemingly simple as positive/negative/neutral/mixed sentiment polarity, 100% of the time. Scientific studies and practical tests I've seen suggest that people agree at a 80%-90% rate when it comes to sentiment classification.

Given measured rates of human-human non-agreement, and with the age of intelligent(-seeming) machines looming, is "Did the computer pick the same a human would've picked?" -- which human? -- the only, or even the best, accuracy criterion? Surely there's much to be learned in comparing, or even working from the consensus of, different machine methods, in contrasting and compiling machine-machine results.

Further, implicit in Kolsky's analysis, in my reading, is an incomplete understanding of "accuracy." Any accuracy definition that looks primarily at precision -- in this context the same as "correctness" -- just one of three components of accuracy, is incomplete.

Kolsky focuses on the task of determining the sentiment of "a specific word or combination of words," on "the computer's perception that a tweet or blog post has positive or negative inclination." His definition would cover very discrete tasks adequately -- taking the SAT, reading single blogs or tweets -- but competitive businesses can not afford over-focused insularity. They must concern themselves with a huge swathe of social and news media. So what of the other two components of information retrieval-analysis accuracy, recall and relevance?

"Recall" is the proportion of pertinent material that is retrieved. On the recall front, there's no contest: machines can operate 24/7, they can parse material in and across multiple human languages (where no one person can handle more than a handful), and they can sift through vast volumes of material very quickly. The machines win hands-down.

As for relevance, well, I won't argue that machines perform better than humans in rank-ordering lists to respond to differing business or other criteria. I will argue, however, that machines can outperform humans in discovering obscure or even hidden relationships in large volumes of data. This ability is what data mining is all about: fitting models to data for predictive purposes. Those models may be hard to understand -- they lack explanatory transparency -- but we use them nonetheless because they work. Relationships are key to social-network analysis, as are measure-driven model for quantities such as impact, velocity, and authority. These quantities may factor into relevance. And relevance matters -- alongside precision and recall -- to a complete accuracy picture.

Finally, Kolsky's focus on the link between accuracy (however defined) and the business bottom line is spot-on. He recommends removing biases from analytics, improving accuracy, and looking at multiple customer-data sources and cross-referencing them. These are important steps that can quantifiably contribute to meeting cost, efficiency, profitability, satisfaction, and other business goals. Accuracy in analytics does indeed matter for businesses.


If you'd like to further explore information retrieval and analytics methods and applications, consider attending the 6th annual Text Analytics Summit, slated for May 25-26 in Boston. I'll reprise my role as chair and teach a pre-summit Introduction to Text Analytics the afternoon of May 24.For information retrieval and analytics purposes, we need a broad definition of "accuracy."

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
How Enterprises Are Attacking the IT Security Enterprise
How Enterprises Are Attacking the IT Security Enterprise
To learn more about what organizations are doing to tackle attacks and threats we surveyed a group of 300 IT and infosec professionals to find out what their biggest IT security challenges are and what they're doing to defend against today's threats. Download the report to see what they're saying.
Register for InformationWeek Newsletters
White Papers
Current Issue
2017 State of IT Report
In today's technology-driven world, "innovation" has become a basic expectation. IT leaders are tasked with making technical magic, improving customer experience, and boosting the bottom line -- yet often without any increase to the IT budget. How are organizations striking the balance between new initiatives and cost control? Download our report to learn about the biggest challenges and how savvy IT executives are overcoming them.
Video
Slideshows
Twitter Feed
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.
Flash Poll