Software // Information Management
News
9/10/2007
06:00 PM
Connect Directly
LinkedIn
Twitter
Google+
RSS
E-Mail
50%
50%

IBM Develops 100,000 DPI Printing

Researchers make print particles about 100 times smaller than a human red blood cell to help make next-generation computer chips or money harder to counterfeit.

Scientists at IBM Research in Zurich, Switzerland, have come up with a way to print particles as small as 60 nanometers, about 100 times smaller than a human red blood cell.

Working in conjunction with the Swiss Federal Institute of Technology, ETH Zurich, the researchers expect their work will contribute to the development of a variety of nanoscale devices such as medical biosensors, tiny lenses for optical chips, and nanowires for next-generation computer chips. The technique also could be used to make money harder to counterfeit.

In contrast to offset printing today, which operates at 1,500 DPI (dots per inch), this nanoscale printing method delivers 100,000 DPI, according to IBM.

The technique remains several years away from commercial availability. IBM expects it will allow companies to create nanostructures inside chips using high-volume manufacturing techniques.

"It's a relatively broad technique," said Tobias Kraus, an IBM researcher, who likened its flexibility to being able to print with different inks for different applications rather than having to design special devices for each nanoprinting application.

The technique is described in a paper entitled "Nanoparticle printing with single-particle resolution," which is scheduled to appear in the September issue of Nature Nanotechnology.

Whereas traditional printing techniques are stochastic, or random, in the way the ink is distributed within inked areas, the approach developed by Kraus, Laurent Malaquin, Heinz Schmid, Walter Riess, Nicholas D. Spencer, and Heiko Wolf offers price control over where nanoparticles are placed on the printing surface using "directed assembly."

"In contrast to conventional inking, directed assembly doesn't merely fill predefined structures with randomly dispersed pigment particles, but arranges nanoparticles at positions that are defined by the geometry of a template," the paper states.

For applications like creating nanowires, that kind of control is critical, explained Wolf. "The point is if you want to use these nanowires, you have to be sure you have them where you need them," he said. "This is where our method kicks in."

According to Kraus, this nanoprinting technique is three orders of magnitude more precise than conventional printing.

To demonstrate the new printing method, the researchers printed Robert Fludd's 17th-century image of the sun, the symbol for gold among alchemists, using 20,000 60-nm gold particles.

Comment  | 
Print  | 
More Insights
The Agile Archive
The Agile Archive
When it comes to managing data, donít look at backup and archiving systems as burdens and cost centers. A well-designed archive can enhance data protection and restores, ease search and e-discovery efforts, and save money by intelligently moving data from expensive primary storage systems.
Register for InformationWeek Newsletters
White Papers
Current Issue
InformationWeek Tech Digest, Nov. 10, 2014
Just 30% of respondents to our new survey say their companies are very or extremely effective at identifying critical data and analyzing it to make decisions, down from 42% in 2013. What gives?
Video
Slideshows
Twitter Feed
InformationWeek Radio
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.