Software // Enterprise Applications
News
6/16/2006
02:05 PM
50%
50%

Researchers Teach Computers To See As Humans Do

Researchers are tackling computerized visual recognition by using mathematical models that work the same way our brains process images, an approach that differs fundamentally from current methods.

Can Computers be taught to see just like people? Scientists at MIT's Center for Biological and Computational Learning think so.

Researchers are tackling computerized visual recognition by using mathematical models that work the same way our brains process images. This approach is fundamentally different from current visual recognition methods and could result in search tools that can identify people's faces in seconds.

The scientists work with the center's neurophysiologists, who are studying how the brain sorts images, such as how the tiniest part of an image rouses a photoreceptor in the eye and induces neurons to fire in a specific pattern. At MIT and elsewhere, computer scientists are developing mathematical models of the neuron simulation patterns for particular things--cars, faces, and buildings. Eventually, when a computer sees a car, it's hoped the machine will respond by comparing the neural pattern it processes to earlier instances of car viewing, just as humans do.

That's different from current visual recognition technology, which has grown into a $7 billion industry, according to David Lowe, a University of British Columbia computer science professor. Today, programmers use a half-century-old statistical learning system to teach a computer that certain images are trees and other images aren't. Pixel by pixel, the computer scrutinizes each image and statistically discerns what characteristics trees share with each other but not with other objects.

Statistical learning systems recognize only one type of image, such as a product on an assembly line, says Stan Bileschi, an MIT researcher. But an approach based on how a brain functions would allow the development of software that can recognize many images. To index an image, a user would tag one or two images of a specific item or scene, and the system would recognize all such images in a database.

Bileschi expects neuron-based imaging technology to aid the development of more sophisticated surveillance software and to help neurologists diagnose radiological images.

So far, scientists understand what happens during the first milliseconds of neurons firing in response to images, but they know little about the feedback the brain sends about images. For instance, a person seeing a blurry image on a road doesn't immediately distinguish that it's a car, but knows it likely is. To develop software that can mimic that behavior, more sophisticated imaging technologies must be developed.

Comment  | 
Print  | 
More Insights
Building A Mobile Business Mindset
Building A Mobile Business Mindset
Among 688 respondents, 46% have deployed mobile apps, with an additional 24% planning to in the next year. Soon all apps will look like mobile apps and it's past time for those with no plans to get cracking.
Register for InformationWeek Newsletters
White Papers
Current Issue
InformationWeek Tech Digest, Dec. 9, 2014
Apps will make or break the tablet as a work device, but don't shortchange critical factors related to hardware, security, peripherals, and integration.
Video
Slideshows
Twitter Feed
InformationWeek Radio
Archived InformationWeek Radio
Join us for a roundup of the top stories on InformationWeek.com for the week of December 14, 2014. Be here for the show and for the incredible Friday Afternoon Conversation that runs beside the program.
Sponsored Live Streaming Video
Everything You've Been Told About Mobility Is Wrong
Attend this video symposium with Sean Wisdom, Global Director of Mobility Solutions, and learn about how you can harness powerful new products to mobilize your business potential.